Randomness vs. Completeness: On the Diagonalization Strength of Resource-Bounded Random Sets

نویسندگان

  • Klaus Ambos-Spies
  • Steffen Lempp
  • Gunther Mainhardt
چکیده

We show that the question of whether the p-tt-complete or p-T -complete sets for the deterministic time classes E and EXP have measure 0 in these classes in the sense of Lutz's resource-bounded measure cannot be decided by relativizable techniques. On the other hand, we obtain the following absolute results if we bound the norm, i.e., the number of oracle queries of the reductions: For r = tt; T , p (fC : C p-r(kn)-complete for Eg) = 0 and p 2 (fC : C p-r(n k )-complete for EXPg) = 0: In the second part of the paper we investigate the diagonalization strength of random sets in an abstract way by relating randomness to a new genericity concept. This provides an alternative, quite elegant and powerful approach for obtaining results on resource-bounded measures like the ones in the rst part of the paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resource Bounded Randomness and Weakly Complete Problems 1

We introduce and study resource bounded random sets based on Lutz's concept of resource bounded measure ((7, 8]). We concentrate on n c-randomness (c 2) which corresponds to the polynomial time bounded (p-) measure of Lutz, and which is adequate for studying the internal and quantitative structure of E = DTIME(2 lin). However we will also comment on E2 = DTIME(2 pol) and its corresponding (p2-)...

متن کامل

Resource bounded randomness and computational complexity

The following is a survey of resource bounded randomness concepts and their relations to each other. Further, we introduce several new resource bounded randomness concepts corresponding to the classical randomness concepts, and show that the notion of polynomial time bounded Ko randomness is independent of the notions of polynomial time bounded Lutz, Schnorr and Kurtz randomness. Lutz has conje...

متن کامل

Completeness in Probabilistic Metric Spaces

The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...

متن کامل

Homomorphisms on Topological Groups from the Perspective of Bourbaki-boundedness

In this note we study some topological properties of bounded sets and Bourbaki-bounded sets. Also we introduce two types of Bourbaki-bounded homomorphisms on topological groups  including, n$-$Bourbaki-bounded homomorphisms and$hspace{1mm}$ B$-$Bourbaki-bounded homomorphisms. We compare them to each other and with the class of continuous homomorphisms. So, two topologies are presented on them a...

متن کامل

An Excursion to the Kolmogorov Random Strings

We study the set of resource bounded Kolmogorov random strings: R t = fx j K t (x) jxjg for t a time constructible function such that t(n) 2 n 2 and t(n) 2 2 n O(1). We show that the class of sets that Tur-ing reduce to R t has measure 0 in EXP with respect to the resource-bounded measure introduced by 17]. From this we conclude that R t is not Turing-complete for EXP. This contrasts the resour...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998